Energy Flow – Law of thermodynamics

UG degree

Energy flow

The transfer of energy in an ecosystem between trophic levels can be termed as energy flow. It is the key function in an ecosystem. Part of the energy obtained from the sun by producers is transferred to consumers and decomposers through each trophic level, while some amount of energy is dissipated in the form of heat. Energy flow is always unidirectional in an ecosystem.

Laws of thermodynamics

The storage and loss of energy in an ecosystem is based on two basic laws of thermo-dynamics.

i. First law of thermodynamics

It states that energy can be transmitted from one system to another in various forms. Energy cannot be destroyed or created. But it can be transformed from one form to another. As a result, the quantity of energy present in the universe is constant.


In photosynthesis, the product of starch (chemical energy) is formed by the combination of reactants (chlorophyll, H2O, CO2). The energy stored in starch is acquired from the external sources (light energy) and so there is no gain or loss in total energy. Here light energy is converted into chemical energy.

ii. Second law of thermodynamics

It states that energy transformation results in the reduction of the free energy of the system. Usually energy transformation cannot be 100% efficient. As energy is transferred from one organism to another in the form of food, a portion of it is stored as energy in living tissue, whereas a large part of energy is dissipated as heat through respiration. The transfer of energy is irreversible natural process.

Example: Ten percent law

Ten percent law

This law was proposed by Lindeman (1942). It states that during transfer of food energy from one trophic level to other, only about 10% stored at every level and rest of them (90%) is lost in respiration, decomposition and in the form of heat. Hence, the law is called ten percent law. Example: It is shown that of the 1000 Joules of Solar energy trapped by producers. 100 Joules of energy is stored as chemical energy through photosynthesis.

The remaining 900 Joules would be lost in the environment. In the next trophic level herbivores, which feed on producers get only 10 Joules of energy and the remaining 90 Joules is lost in the environment. Likewise, in the next trophic level, carnivores, which eat herbivores store only 1 Joule of energy and the remaining 9 Joules is dissipated. Finally, the carnivores are eaten by tertiary consumers which store only 0.1 Joule of energy and the remaining 0.9 Joule is lost in the environment. Thus, at the successive trophic level, only ten percent energy is stored.

Leave a Reply